Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nature ; 625(7995): 566-571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172634

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) has emerged as a major global pathogen with limited treatment options1. No new antibiotic chemical class with activity against A. baumannii has reached patients in over 50 years1. Here we report the identification and optimization of tethered macrocyclic peptide (MCP) antibiotics with potent antibacterial activity against CRAB. The mechanism of action of this molecule class involves blocking the transport of bacterial lipopolysaccharide from the inner membrane to its destination on the outer membrane, through inhibition of the LptB2FGC complex. A clinical candidate derived from the MCP class, zosurabalpin (RG6006), effectively treats highly drug-resistant contemporary isolates of CRAB both in vitro and in mouse models of infection, overcoming existing antibiotic resistance mechanisms. This chemical class represents a promising treatment paradigm for patients with invasive infections due to CRAB, for whom current treatment options are inadequate, and additionally identifies LptB2FGC as a tractable target for antimicrobial drug development.


Assuntos
Antibacterianos , Lipopolissacarídeos , Proteínas de Membrana Transportadoras , Animais , Humanos , Camundongos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Antibacterianos/classificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/efeitos dos fármacos , Modelos Animais de Doenças , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Desenvolvimento de Medicamentos
2.
J Med Chem ; 66(20): 14116-14132, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37801325

RESUMO

Hepatitis B Virus (HBV) core protein allosteric modulators (CpAMs) are an attractive class of potential anti-HBV therapeutic agents. Here we describe the efforts toward the discovery of a series of 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine (THPP) compounds as HBV CpAMs that effectively inhibit a broad range of nucleos(t)ide-resistant HBV variants. The lead compound 45 demonstrated inhibition of HBV DNA viral load in a HBV AAV mouse model by oral administration.


Assuntos
Hepatite B Crônica , Hepatite B , Animais , Camundongos , Vírus da Hepatite B , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteínas do Core Viral/metabolismo , DNA Viral , Hepatite B/tratamento farmacológico , Hepatite B Crônica/tratamento farmacológico
3.
J Med Chem ; 66(6): 4253-4270, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36896968

RESUMO

Described herein is the first-time disclosure of Linvencorvir (RG7907), a clinical compound and a hepatitis B virus (HBV) core protein allosteric modulator, for the treatment of chronic HBV infection. Built upon the core structure of hetero aryl dihydropyrimidine, RG7907 was rationally designed by combining all the drug-like features of low CYP3A4 induction, potent anti-HBV activity, high metabolic stability, low hERG liability, and favorable animal pharmacokinetic (PK) profiles. In particular, the chemistry strategy to mitigate CYP3A4 induction through introducing a large, rigid, and polar substituent at the position that has less interaction with the therapeutic biological target (HBV core proteins herein) is of general interest to the medicinal chemistry community. RG7907 demonstrated favorable animal PK, pharmacodynamics, and safety profiles with sufficient safety margins supporting its clinical development in healthy volunteers and HBV-infected patients.


Assuntos
Hepatite B Crônica , Hepatite B , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Citocromo P-450 CYP3A/metabolismo , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Proteínas do Core Viral/metabolismo
4.
J Hepatol ; 78(4): 742-753, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587899

RESUMO

BACKGROUND & AIMS: The persistence of covalently closed circular DNA (cccDNA) in infected hepatocytes is the major barrier preventing viral eradication with existing therapies in patients with chronic hepatitis B. Therapeutic agents that can eliminate cccDNA are urgently needed to achieve viral eradication and thus HBV cure. METHODS: A phenotypic assay with HBV-infected primary human hepatocytes (PHHs) was employed to screen for novel cccDNA inhibitors. A HBVcircle mouse model and a uPA-SCID (urokinase-type plasminogen activator-severe combined immunodeficiency) humanized liver mouse model were used to evaluate the anti-HBV efficacy of the discovered cccDNA inhibitors. RESULTS: Potent and dose-dependent reductions in extracellular HBV DNA, HBsAg, and HBeAg levels were achieved upon the initiation of ccc_R08 treatment two days after the HBV infection of PHHs. More importantly, the level of cccDNA was specifically reduced by ccc_R08, while it did not obviously affect mitochondrial DNA. Additionally, ccc_R08 showed no significant cytotoxicity in PHHs or in multiple proliferating cell lines. The twice daily oral administration of ccc_R08 to HBVcircle model mice, which contained surrogate cccDNA molecules, significantly decreased the serum levels of HBV DNA and antigens, and these effects were sustained during the off-treatment follow-up period. Moreover, at the end of follow-up, the levels of surrogate cccDNA molecules in the livers of ccc_R08-treated HBVcircle mice were reduced to below the lower limit of quantification. CONCLUSIONS: We have discovered a small-molecule cccDNA inhibitor that reduces HBV cccDNA levels. cccDNA inhibitors potentially represent a new approach to completely cure patients chronically infected with HBV. IMPACT AND IMPLICATIONS: Covalently closed circular DNA (cccDNA) persistence in HBV-infected hepatocytes is the root cause of chronic hepatitis B. We discovered a novel small-molecule cccDNA inhibitor that can specifically reduce cccDNA levels in HBV-infected hepatocytes. This type of molecule could offer a new approach to completely cure patients chronically infected with HBV.


Assuntos
Hepatite B Crônica , Humanos , Animais , Camundongos , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B , DNA Circular/uso terapêutico , DNA Viral/genética , Replicação Viral , Camundongos SCID , Antivirais/farmacologia , Antivirais/uso terapêutico
5.
Front Immunol ; 13: 884113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677037

RESUMO

Conventional treatment of chronic hepatitis B (CHB) is rarely curative due to the immunotolerant status of patients. RG7854 is an oral double prodrug of a toll-like receptor 7 (TLR7) agonist that is developed for the treatment of CHB. The therapeutic efficacy, host immune response, and safety of RG7854 were evaluated in the woodchuck model of CHB. Monotreatment with the two highest RG7854 doses and combination treatment with the highest RG7854 dose and entecavir (ETV) suppressed viral replication, led to loss of viral antigens, and induced seroconversion in responder woodchucks. Since viral suppression and high-titer antibodies persisted after treatment ended, this suggested that a sustained antiviral response (SVR) was induced by RG7854 in a subset of animals. The SVR rate, however, was comparable between both treatment regimens, suggesting that the addition of ETV did not enhance the therapeutic efficacy of RG7854 although it augmented the proliferation of blood cells in response to viral antigens and magnitude of antibody titers. The induction of interferon-stimulated genes in blood by RG7854/ETV combination treatment demonstrated on-target activation of TLR7. Together with the virus-specific blood cell proliferation and the transient elevations in liver enzymes and inflammation, this suggested that cytokine-mediated non-cytolytic and T-cell mediated cytolytic mechanisms contributed to the SVR, in addition to the virus-neutralizing effects by antibody-producing plasma cells. Both RG7854 regimens were not associated with treatment-limiting adverse effects but accompanied by dose-dependent, transient neutropenia and thrombocytopenia. The study concluded that finite, oral RG7854 treatment can induce a SVR in woodchucks that is based on the retrieval of antiviral innate and adaptive immune responses. This supports future investigation of the TLR7 agonist as an immunotherapeutic approach for achieving functional cure in patients with CHB.


Assuntos
Antivirais , Hepatite B Crônica , Marmota , Soroconversão , Receptor 7 Toll-Like , Animais , Antígenos Virais , Antivirais/uso terapêutico , Hepatite B Crônica/imunologia , Hepatite B Crônica/veterinária , Receptor 7 Toll-Like/agonistas
6.
Cell Rep ; 39(2): 110690, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417684

RESUMO

Viruses must effectively remodel host cellular pathways to replicate and evade immune defenses, and they must do so with limited genomic coding capacity. Targeting post-translational modification (PTM) pathways provides a mechanism by which viruses can broadly and rapidly transform a hostile host environment into a hospitable one. We use mass spectrometry-based proteomics to quantify changes in protein abundance and two PTM types-phosphorylation and ubiquitination-in response to HIV-1 infection with viruses harboring targeted deletions of a subset of HIV-1 genes. PTM analysis reveals a requirement for Aurora kinase activity in HIV-1 infection and identified putative substrates of a phosphatase that is degraded during infection. Finally, we demonstrate that the HIV-1 Vpr protein inhibits histone H1 ubiquitination, leading to defects in DNA repair.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , HIV-1/genética , Humanos , Processamento de Proteína Pós-Traducional , Proteômica , Ubiquitinação
7.
Antiviral Res ; 186: 104972, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242518

RESUMO

Inhibition of the host RNA polyadenylating polymerases, PAPD5 and PAPD7 (PAPD5/7), with dihydroquinolizinone, a small orally available, molecule, results in a rapid and selective degradation of hepatitis B virus (HBV) RNA, and hence reduction in the amounts of viral gene products. DHQ, is a first in class investigational agent and could represent an entirely new category of HBV antivirals. PAPD5 and PAPD7 are non-canonical, cell specified, polyadenylating polymerases, also called terminal nucleotidyl transferases 4B and 4A (TENT4B/A), respectively. They are involved in the degradation of poor-quality cell transcripts, mostly non-coding RNAs and in the maturation of a sub-set of transcripts. They also appear to play a role in shielding some mRNA from degradation. The results of studies with DHQ, along with other recent findings, provide evidence that repression of the PAPD5/7 arm of the cell "RNA quality control" pathway, causes a profound (multi-fold) reduction rather than increase, in the amount of HBV pre-genomic, pre-core and HBsAg mRNA levels in tissue culture and animal models, as well. In this review we will briefly discuss the need for new HBV therapeutics and provide background about HBV transcription. We also discuss cellular degradation of host transcripts, as it relates to a new family of anti-HBV drugs that interfere with these processes. Finally, since HBV mRNA maturation appears to be selectively sensitive to PAPD5/7 inhibition in hepatocytes, we discuss the possibility of targeting host RNA "quality control" as an antiviral strategy.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Estabilidade de RNA/efeitos dos fármacos , Regulação Viral da Expressão Gênica , Hepatite B/virologia , Hepatócitos/virologia , Humanos , Estabilidade de RNA/fisiologia , Replicação Viral
8.
Cell Host Microbe ; 28(5): 638-645, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33152278

RESUMO

When SARS-CoV-2 emerged at the end of 2019, no approved therapeutics or vaccines were available. An urgent need for countermeasures during this crisis challenges the current paradigm of traditional drug discovery and development, which usually takes years from start to finish. Approaches that accelerate this process need to be considered. Here we propose the minimum data package required to move a compound into clinical development safely. We further define the additional data that should be collected in parallel without impacting the rapid path to clinical development. Accelerated paths for antivirals, immunomodulators, anticoagulants, and other agents have been developed and can serve as "roadmaps" to support prioritization of compounds for clinical testing. These accelerated paths are fueled by a skewed risk-benefit ratio and are necessary to advance therapeutic agents into human trials rapidly and safely for COVID-19. Such paths are adaptable to other potential future pandemics.


Assuntos
Antivirais , Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Vacinas , Antivirais/uso terapêutico , COVID-19 , Humanos , SARS-CoV-2
9.
Cells ; 9(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882949

RESUMO

The infectious life cycle of the human immunodeficiency virus type 1 (HIV-1) is characterized by an ongoing battle between a compendium of cellular proteins that either promote or oppose viral replication. On the one hand, HIV-1 utilizes dependency factors to support and sustain infection and complete the viral life cycle. On the other hand, both inducible and constitutively expressed host factors mediate efficient and functionally diverse antiviral processes that counteract an infection. To shed light into the complex interplay between HIV-1 and cellular proteins, we previously performed a targeted siRNA screen to identify and characterize novel regulators of viral replication and identified Cullin 3 (Cul3) as a previously undescribed factor that negatively regulates HIV-1 replication. Cul3 is a component of E3-ubiquitin ligase complexes that target substrates for ubiquitin-dependent proteasomal degradation. In the present study, we show that Cul3 is expressed in HIV-1 target cells, such as CD4+ T cells, monocytes, and macrophages and depletion of Cul3 using siRNA or CRISPR/Cas9 increases HIV-1 infection in immortalized cells and primary CD4+ T cells. Conversely, overexpression of Cul3 reduces HIV-1 infection in single replication cycle assays. Importantly, the antiviral effect of Cul3 was mapped to the transcriptional stage of the viral life cycle, an effect which is independent of its role in regulating the G1/S cell cycle transition. Using isogenic viruses that only differ in their promotor region, we find that the NF-κB/NFAT transcription factor binding sites in the LTR are essential for Cul3-dependent regulation of viral gene expression. Although Cul3 effectively suppresses viral gene expression, HIV-1 does not appear to antagonize the antiviral function of Cul3 by targeting it for degradation. Taken together, these results indicate that Cul3 is a negative regulator of HIV-1 transcription which governs productive viral replication in infected cells.


Assuntos
Proteínas Culina/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Transcrição Gênica/genética , Replicação Viral/genética , Sítios de Ligação , Doadores de Sangue , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proteínas Culina/genética , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC , Sequências Repetidas Terminais , Transfecção
10.
Hepatol Commun ; 4(6): 916-931, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32490326

RESUMO

RG7834 is a small-molecule inhibitor of hepatitis B virus (HBV) gene expression that significantly reduces the levels of hepatitis B surface antigen (HBsAg) and HBV DNA in a humanized liver HBV mouse model. In the current study, we evaluated the potency of RG7834 in the woodchuck model of chronic HBV infection, alone and in combination with entecavir (ETV) and/or woodchuck interferon-α (wIFN-α). RG7834 reduced woodchuck hepatitis virus (WHV) surface antigen (WHsAg) by a mean of 2.57 log10 from baseline and WHV DNA by a mean of 1.71 log10. ETV + wIFN-α reduced WHsAg and WHV DNA by means of 2.40 log10 and 6.70 log10, respectively. The combination of RG7834, ETV, and wIFN-α profoundly reduced WHsAg and WHV DNA levels by 5.00 log10 and 7.46 log10, respectively. However, both viral parameters rebounded to baseline after treatment was stopped and no antibody response against WHsAg was observed. Effects on viral RNAs were mainly seen with the triple combination treatment, reducing both pregenomic RNA (pgRNA) and WHsAg RNA, whereas RG7834 mainly reduced WHsAg RNA and ETV mainly affected pgRNA. When WHsAg was reduced by the triple combination, peripheral blood mononuclear cells (PBMCs) proliferated significantly in response to viral antigens, but the cellular response was diminished after WHsAg returned to baseline levels during the off-treatment period. Consistent with this, Pearson correlation revealed a strong negative correlation between WHsAg levels and PBMC proliferation in response to peptides covering the entire WHsAg and WHV nucleocapsid antigen. Conclusion: A fast and robust reduction of WHsAg by combination therapy reduced WHV-specific immune dysfunction in the periphery. However, the magnitude and/or duration of the induced cellular response were not sufficient to achieve a sustained antiviral response.

11.
Hepatology ; 72(6): 1935-1948, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32145089

RESUMO

BACKGROUND AND AIMS: Hepatitis B virus (HBV) infection is ranked among the top health priorities worldwide. Accumulating evidence suggests that HBV infection and replication are closely associated with liver metabolism. The liver X receptors (LXRs), which belong to the superfamily of nuclear hormone receptors, are important physiological regulators of lipid and cholesterol metabolism. However, the association between the LXR pathway and HBV infection remains largely unclear. APPROACH AND RESULTS: In this study, the antiviral activity of LXR agonists was investigated using multiple HBV cellular models. We observed that in HBV-infected primary human hepatocytes (PHHs), synthetic LXR agonists (T0901317, GW3965, and LXR-623), but not an LXR antagonist (SR9238), potently inhibited HBV replication and gene expression, as demonstrated by substantial reductions in viral RNA, DNA, and antigen production following agonist treatment. However, covalently closed circular DNA (cccDNA) levels were not significantly reduced by the agonists. In addition, no rebound in viral replication was observed after treatment withdrawal, indicating a long-lasting inhibitory effect. These results suggest that LXR agonists decrease the transcriptional activity of cccDNA. In contrast, no significant anti-HBV effect was observed in HepG2-derived cell lines. Interestingly, LXR agonist treatment strongly reduced cholesterol 7α-hydroxylase 1 (CYP7A1) mRNA levels. Knockdown of CYP7A1 gene expression with small interfering RNA inhibited HBV activity in PHHs, suggesting CYP7A1 as a potential factor contributing to the antiviral effects of LXR agonists. CONCLUSIONS: We found that activation of the LXR pathway with synthetic LXR agonists could elicit potent anti-HBV activity in PHHs, possibly through sustained suppression of cccDNA transcription. Our work highlights the therapeutic potential of targeting the LXR pathway for the treatment of chronic HBV infection.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Receptores X do Fígado/agonistas , Fígado/metabolismo , Antígenos Virais/genética , Antígenos Virais/isolamento & purificação , Antivirais/uso terapêutico , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Células Cultivadas , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , DNA Viral/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Técnicas de Silenciamento de Genes , Hepatite B/virologia , Vírus da Hepatite B/fisiologia , Hepatócitos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Hidrocarbonetos Fluorados/farmacologia , Hidrocarbonetos Fluorados/uso terapêutico , Indazóis/farmacologia , Indazóis/uso terapêutico , Fígado/citologia , Receptores X do Fígado/antagonistas & inibidores , Receptores X do Fígado/metabolismo , Cultura Primária de Células , RNA Viral/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Replicação Viral/efeitos dos fármacos
12.
Sci Rep ; 9(1): 18892, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827222

RESUMO

Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progression has not been fully defined and tools aiding the deconvolution of complex patient virus profiles is an unmet clinical need. Variable viral mutant signatures develop within individual patients due to the low-fidelity replication of the viral polymerase creating 'quasispecies' populations. Here we present the first comprehensive survey of the diversity of HBV quasispecies through ultra-deep sequencing of the complete HBV genome across two distinct European and Asian patient populations. Seroconversion to the HBV e antigen (HBeAg) represents a critical clinical waymark in infected individuals. Using a machine learning approach, a model was developed to determine the viral variants that accurately classify HBeAg status. Serial surveys of patient quasispecies populations and advanced analytics will facilitate clinical decision support for chronic HBV infection and direct therapeutic strategies through improved patient stratification.


Assuntos
DNA Viral , Variação Genética , Genoma Viral , Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Aprendizado de Máquina , Carcinoma Hepatocelular/virologia , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/virologia , Masculino , Quase-Espécies
13.
Hepatology ; 70(1): 11-24, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30664279

RESUMO

Hepatitis B e antigen (HBeAg) is an important immunomodulator for promoting host immune tolerance during chronic hepatitis B (CHB) infection. In patients with CHB, HBeAg loss and seroconversion represent partial immune control of CHB infection and are regarded as valuable endpoints. However, the current approved treatments have only a limited efficacy in achieving HBeAg seroconversion in HBeAg-positive patients. Hepatitis B virus (HBV) core protein has been recognized as an attractive antiviral target, and two classes of core protein allosteric modulator (CpAM) have been discovered: the phenylpropenamides (PPAs) and the heteroaryldihydropyrimidines (HAPs). However, their differentiation and potential therapeutic benefit beyond HBV DNA inhibition remain to be seen. Here, we show that in contrast to PPA series compound AT-130, a HAP CpAM, HAP_R01, reduced HBeAg levels in multiple in vitro and in vivo HBV experimental models. Mechanistically, we found that HAP_R01 treatment caused the misassembly of capsids formed by purified HBeAg in vitro. In addition, HAP_R01 directly reduces HBeAg levels by inducing intracellular precore protein misassembly and aggregation. Using a HAP_R01-resistant mutant, we found that HAP_R01-mediated HBeAg and core protein reductions were mediated through the same mechanism. Furthermore, HAP_R01 treatment substantially reduced serum HBeAg levels in an HBV mouse model. Conclusion: Unlike PPA series compound AT-130, HAP_R01 not only inhibits HBV DNA levels but also directly reduces HBeAg through induction of its misassembly. HAP_R01, as well as other similar CpAMs, has the potential to achieve higher anti-HBeAg seroconversion rates than currently approved therapies for patients with CHB. Our findings also provide guidance for dose selection when designing clinical trials with molecules from HAP series.


Assuntos
Antígenos E da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Pirimidinas/farmacologia , Regulação Alostérica , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Terapia de Alvo Molecular , Pirimidinas/uso terapêutico
14.
Hepatology ; 69(4): 1398-1411, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30365161

RESUMO

RG7834 is a potent, orally bioavailable small-molecule inhibitor of hepatitis B virus (HBV) gene expression that belongs to the dihydroquinolizinone (DHQ) chemical class and uniquely blocks production of both viral DNA and antigens. In this study, we used DHQ compounds as tools in a compound-based adaptation version of the yeast three-hybrid screen to identify the cognate cellular protein targets, the non-canonical poly(A) RNA polymerase associated domain containing proteins 5 and 7 (PAPD5 and PAPD7). Interaction with RG7834 was mapped to the catalytic domains of the two cellular enzymes. The role of PAPD5 and PAPD7 in HBV replication was confirmed by oligonucleotide-mediated knockdown studies that phenocopied the result seen with RG7834-treated HBV-infected hepatocytes. The greatest effect on HBV gene expression was seen when PAPD5 and PAPD7 mRNAs were simultaneously knocked down, suggesting that the two cellular proteins play a redundant role in maintaining HBV mRNA levels. In addition, as seen previously with RG7834 treatment, PAPD5 and PAPD7 knockdown led to destabilization and degradation of HBV mRNA without impacting production of viral RNA transcripts. Conclusion: We identify PAPD5 and PAPD7 as cellular host factors required for HBV RNA stabilization and as therapeutic targets for the HBV cure.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/fisiologia , Terapia de Alvo Molecular , RNA Nucleotidiltransferases/fisiologia , Hepatite B/tratamento farmacológico , Humanos , Técnicas do Sistema de Duplo-Híbrido
15.
Mol Ther Nucleic Acids ; 11: 441-454, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858079

RESUMO

Chronic hepatitis B infection (CHB) is an area of high unmet medical need. Current standard-of-care therapies only rarely lead to a functional cure, defined as durable hepatitis B surface antigen (HBsAg) loss following treatment. The goal for next generation CHB therapies is to achieve a higher rate of functional cure with finite treatment duration. To address this urgent need, we are developing liver-targeted single-stranded oligonucleotide (SSO) therapeutics for CHB based on the locked nucleic acid (LNA) platform. These LNA-SSOs target hepatitis B virus (HBV) transcripts for RNase-H-mediated degradation. Here, we describe a HBV-specific LNA-SSO that effectively reduces intracellular viral mRNAs and viral antigens (HBsAg and HBeAg) over an extended time period in cultured human hepatoma cell lines that were infected with HBV with mean 50% effective concentration (EC50) values ranging from 1.19 to 1.66 µM. To achieve liver-specific targeting and minimize kidney exposure, this LNA-SSO was conjugated to a cluster of three N-acetylgalactosamine (GalNAc) moieties that direct specific binding to the asialoglycoprotein receptor (ASGPR) expressed specifically on the surface of hepatocytes. The GalNAc-conjugated LNA-SSO showed a strikingly higher level of potency when tested in the AAV-HBV mouse model as compared with its non-conjugated counterpart. Remarkably, higher doses of GalNAc-conjugated LNA-SSO resulted in a rapid and long-lasting reduction of HBsAg to below the detection limit for quantification, i.e., by 3 log10 (p < 0.0003). This antiviral effect depended on a close match between the sequences of the LNA-SSO and its HBV target, indicating that the antiviral effect is not due to non-specific oligonucleotide-driven immune activation. These data support the development of LNA-SSO therapeutics for the treatment of CHB infection.

16.
ACS Infect Dis ; 4(3): 257-277, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29369612

RESUMO

The chronic infection of hepatitis B virus (HBV) inflicts 250 million people worldwide representing a major public health threat. A significant subpopulation of patients eventually develop cirrhosis and hepatocellular carcinoma (HCC). Unfortunately, none of the current standard therapies for chronic hepatitis B (CHB) result in a satisfactory clinical cure rate. Driven by a highly unmet medical need, multiple pharmaceutical companies and research institutions have been engaged in drug discovery and development to improve the CHB functional cure rate, defined by sustainable viral suppression and HBsAg clearance after a finite treatment. This Review summarizes the recent advances in the discovery and development of novel anti-HBV small molecules. It is believed that an improved CHB functional cure rate may be accomplished via the combination of molecules with distinct MoAs. Thus, certain molecules may evolve into key components of a suitable combination therapy leading to superior outcome of clinical efficacy in the future.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Descoberta de Drogas/tendências , Hepatite B Crônica/tratamento farmacológico , Humanos
17.
J Hepatol ; 68(3): 412-420, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29079285

RESUMO

BACKGROUND & AIMS: The hallmarks of chronic HBV infection are a high viral load (HBV DNA) and even higher levels (>100-fold in excess of virions) of non-infectious membranous particles containing the tolerogenic viral S antigen (HBsAg). Currently, standard treatment effectively reduces viremia but only rarely results in a functional cure (defined as sustained HBsAg loss). There is an urgent need to identify novel therapies that reduce HBsAg levels and restore virus-specific immune responsiveness in patients. We report the discovery of a novel, potent and orally bioavailable small molecule inhibitor of HBV gene expression (RG7834). METHODS: RG7834 antiviral characteristics and selectivity against HBV were evaluated in HBV natural infection assays and in a urokinase-type plasminogen activator/severe combined immunodeficiency humanized mouse model of HBV infection, either alone or in combination with entecavir. RESULTS: Unlike nucleos(t)ide therapies, which reduce viremia but do not lead to an effective reduction in HBV antigen expression, RG7834 significantly reduced the levels of viral proteins (including HBsAg), as well as lowering viremia. Consistent with its proposed mechanism of action, time course RNA-seq analysis revealed a fast and selective reduction in HBV mRNAs in response to RG7834 treatment. Furthermore, oral treatment of HBV-infected humanized mice with RG7834 led to a mean HBsAg reduction of 1.09 log10 compared to entecavir, which had no significant effect on HBsAg levels. Combination of RG7834, entecavir and pegylated interferon α-2a led to significant reductions of both HBV DNA and HBsAg levels in humanized mice. CONCLUSION: We have identified a novel oral HBV viral gene expression inhibitor that blocks viral antigen and virion production, that is highly selective for HBV, and has a unique antiviral profile that is clearly differentiated from nucleos(t)ide analogues. LAY SUMMARY: We discovered a novel small molecule viral expression inhibitor that is highly selective for HBV and unlike current therapy inhibits the expression of viral proteins by specifically reducing HBV mRNAs. RG7834 can therefore potentially provide anti-HBV benefits and increase HBV cure rates, by direct reduction of viral agents needed to complete the viral life cycle, as well as a reduction of viral agents involved in evasion of the host immune responses.


Assuntos
Antivirais , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Vírus da Hepatite B , Hepatite B Crônica , Bibliotecas de Moléculas Pequenas , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Antivirais/farmacocinética , Disponibilidade Biológica , DNA Viral/isolamento & purificação , Modelos Animais de Doenças , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Camundongos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacocinética , Resultado do Tratamento , Carga Viral/efeitos dos fármacos
18.
J Virol ; 91(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381571

RESUMO

A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs.IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Quinases Lim/antagonistas & inibidores , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Antivirais/isolamento & purificação , Células Cultivadas , Ebolavirus/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/isolamento & purificação , HIV-1/fisiologia , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Vírus da Febre do Vale do Rift/efeitos dos fármacos
19.
J Med Chem ; 60(8): 3352-3371, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28339215

RESUMO

Described herein are the discovery and structure-activity relationship (SAR) studies of the third-generation 4-H heteroaryldihydropyrimidines (4-H HAPs) featuring the introduction of a C6 carboxyl group as novel HBV capsid inhibitors. This new series of 4-H HAPs showed improved anti-HBV activity and better drug-like properties compared to the first- and second-generation 4-H HAPs. X-ray crystallographic study of analogue 12 (HAP_R01) with Cp149 Y132A mutant hexamer clearly elucidated the role of C6 carboxyl group played for the increased binding affinity, which formed strong hydrogen bonding interactions with capsid protein and coordinated waters. The representative analogue 10 (HAP_R10) was extensively characterized in vitro (ADMET) and in vivo (mouse PK and PD) and subsequently selected for further development as oral anti-HBV infection agent.


Assuntos
Capsídeo/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Pirimidinas/farmacologia , Animais , Cristalografia por Raios X , Descoberta de Drogas , Células Hep G2 , Humanos , Espectrometria de Massas , Camundongos , Espectroscopia de Prótons por Ressonância Magnética , Pirimidinas/química , Pirimidinas/farmacocinética , Relação Estrutura-Atividade
20.
Sci Rep ; 7: 42374, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28205569

RESUMO

Heteroaryldihydropyrimidine (HAP) and sulfamoylbenzamide (SBA) are promising non-nucleos(t)ide HBV replication inhibitors. HAPs are known to promote core protein mis-assembly, but the molecular mechanism of abnormal assembly is still elusive. Likewise, the assembly status of core protein induced by SBA remains unknown. Here we show that SBA, unlike HAP, does not promote core protein mis-assembly. Interestingly, two reference compounds HAP_R01 and SBA_R01 bind to the same pocket at the dimer-dimer interface in the crystal structures of core protein Y132A hexamer. The striking difference lies in a unique hydrophobic subpocket that is occupied by the thiazole group of HAP_R01, but is unperturbed by SBA_R01. Photoaffinity labeling confirms the HAP_R01 binding pose at the dimer-dimer interface on capsid and suggests a new mechanism of HAP-induced mis-assembly. Based on the common features in crystal structures we predict that T33 mutations generate similar susceptibility changes to both compounds. In contrast, mutations at positions in close contact with HAP-specific groups (P25A, P25S, or V124F) only reduce susceptibility to HAP_R01, but not to SBA_R01. Thus, HAP and SBA are likely to have distinctive resistance profiles. Notably, P25S and V124F substitutions exist in low-abundance quasispecies in treatment-naïve patients, suggesting potential clinical relevance.


Assuntos
Benzamidas/farmacologia , Vírus da Hepatite B/fisiologia , Pirimidinas/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Benzamidas/química , Sítios de Ligação , Capsídeo/metabolismo , Cristalografia por Raios X , Replicação do DNA/efeitos dos fármacos , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Ligantes , Mutação/genética , Marcadores de Fotoafinidade , Pirimidinas/química , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA